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Abstract: Forest fires ignited by lightning accounted for 68.28% of all forest fires in the Greater Khin-
gan Mountains (GKM) region of northeast China. Forecasting the incidence of lightning-triggered
forest fires in the region is imperative for mitigating deforestation, preserving biodiversity, and
safeguarding distinctive natural habitats and resources. Lightning monitoring data and vegetation
moisture content have emerged as pivotal factors among the various influences on lightning-induced
fires. This study employed innovative satellite remote sensing technology to swiftly acquire vege-
tation moisture content data across extensive forested regions. Firstly, the most suitable method to
identify the lightning strikes that resulted in fires and two crucial lightning parameters correlated
with fire occurrence are confirmed. Secondly, a logistic regression method is proposed for predicting
the likelihood of fires triggered by lightning strikes. Finally, the method underwent verification using
five years of fire data from the GKM area, resulting in an AUC value of 0.849 and identifying the
primary factors contributing to lightning-induced fires in the region.

Keywords: forest fires; lightning-induced fires; remote sensing data; logistic regression; predic-
tion model

1. Introduction

Forest fires are significant natural disasters characterized by sudden onset [1], high de-
structiveness [2,3], and challenging mitigation and rescue efforts [4]. Specifically, lightning-
induced fires, i.e., forest fires triggered by lightning strikes, pose a more serious threat to
affected areas [5], firefighting difficulty, and financial losses. In China, lightning-induced
fires occur mainly in high-latitude forest regions, with the GKM forest area being sus-
ceptible [6]. Between 1966 and 2009, there were 1592 forest fires reported in the GKM
area, of which 613 were attributed to lightning strikes, accounting for 53.21% of the total
incidents. It has been observed similarly in North America and Canada, where lightning
strikes account for a significant proportion of forest fires. In the boreal forests of North
America, approximately 90% of the burned area can be attributed to lightning-induced
fires [7]. In Canada, lightning-caused fires make up around 45% of the total number of fires,
but they account for approximately 80% of the total burned area [8]. The significance of
investigating lightning-induced forest fires is evident, as they diverge from those ignited
by human activities. The potential development of fires post-lightning is influenced by
natural factors, enabling predictions based on lightning and environmental data.

In the three factors of a fire (ignition sources, combustibles, and combustion con-
ditions), lightning strikes play a crucial role as an ignition source. In the forecasting of
lightning-induced fires, a vital step involves determining whether an ignition source is
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present in large numbers of lightning strikes. The criteria for assessment include the charac-
teristics of the lightning and the environmental conditions during the lightning occurrence.
The former influences the generation of fire sources, while the latter impacts the persis-
tence of fire sources. The primary approach for discerning the characteristics of lightning
leading to a fire involves analyzing the lightning parameters associated with previous
fire incidents and examining the conditions under which a lightning strike transforms
into a source of ignition. Schumacher et al. surveyed lightning fires in Brazil, focusing
on the impact of dry thunderstorms and the Lightning Climate Change (LCC) indices
on the ignition of combustible materials [9,10]. However, their study did not include a
comparative analysis of buffer distance and holding time, crucial factors in accurately iden-
tifying ignited lightning strikes. These parameters play a significant role in determining
the accuracy of lightning strike identification. However, it is noteworthy that in 2019, out
of the 92,517 cloud-to-ground flash incidents in the GKM region, a mere 21 (0.023%) forest
fires were caused by lightning. Various factors, such as weather conditions and topography,
contribute to the conditions that support fires, while combustibles, such as vegetation
type and moisture content, also play a role. This situation underscores the challenge and
importance of identifying the specific lightning strikes responsible for initiating fires, as
only a minor fraction of the numerous lightning bolts serve as ignition sources.

Concerning the nature of combustibles, existing research primarily relies on the Fire
Weather Index (FWI) [11], a well-established and widely employed indicator for predicting
the risk of fires. The FWI data can be adjusted to account for regional variations, thereby
ensuring the accuracy of fire risk predictions in different areas. Nadeem et al. successfully
employed the FWI index to achieve an AUC greater than 0.9 in forecasting the danger
of lightning-induced fires [11]. However, one should recognize that the FWI relies on
successive iterative calculations, and its spatial accuracy is constrained by the limited
variability of the weather indicators within a given region. This limitation undermines
efforts to enhance the precision of fire predictions. Alternatively, remote sensing data
offers numerous advantages that can significantly contribute to fire risk assessment. These
advantages include the swift availability of information, comprehensive coverage [12,13],
and the capacity for continuous monitoring [14]. Moreover, remote sensing data can provide
real-time information about the moisture content of surface combustible materials [8,15–17]
by utilizing various spectral bands [18]. As a result, remote sensing data have the potential
to replace FWI data in fire risk prediction [19].

When considering the weather conditions that lead to fires, precipitation, tempera-
ture, humidity, and wind all play varying roles in the occurrence of fires. Furthermore,
lightning-induced forest fire areas tend to concentrate in specific locations due to the rela-
tively fixed path of the lightning-strike thunderstorm system. The investigation revealed
that most lightning-induced fires occurred on mountain ridges and high slopes, indicating
the influence of topography on the ignition source of lightning fires. Additionally, topogra-
phy also affects the combustion conditions of the fire (e.g., weather) and its combustible
nature (e.g., moisture content). Therefore, this study included topographic data in the
subsequent analysis.

Presently, the predominant methodology in research involves the utilization of a grid-
based approach. For instance, studies conducted by Nami et al. in Iran and Nicholas
et al. in Australia have employed this method, subdividing study regions into 20 × 20 km
grids [20,21]. This approach allows for categorizing fire risk within a 1–8 day time scale,
enabling focused monitoring of regions with high fire risk [21–25]. However, the inves-
tigation into the origins of lightning-induced fires, specifically lightning strikes, lacks a
well-defined direction. In their study of lightning fires in the Portuguese region, Couto
et al. conducted simulations of vegetation and lightning in a controlled laboratory setting
to gain theoretical insights into the mechanisms underlying lightning-induced fires [26].
However, one must note that the laboratory environment does not represent real fire situ-
ations. In predicting future lightning-induced fires, researchers have relied on historical
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data on lightning frequency. For example, Ruth et al. used historical data for lightning fire
prediction in the Australian region [9,27,28].

However, due to the increasing occurrence of abnormal weather patterns in recent
years, historical data on lightning strike frequencies may be subject to delays and reduced
predictive reliability. Therefore, it becomes necessary to address these issues by combining
realistic lightning fire data to identify the patterns of lightning fire occurrences and utilizing
current lightning strikes to determine fire incidents rather than relying solely on historical
lightning strike frequencies. Moris et al. [29] demonstrated a noteworthy delay between
lightning strikes and subsequent incidents of lightning-induced fires. Considering this
delay, one can predict the likelihood of each lightning strike causing a fire.

In conclusion, this study contributes to the understanding of lightning-induced fires
by examining various methods of lightning detection and analyzing data on these fires,
including the timestamps of lightning strikes. This study emphasizes the importance of
identifying ignition lightning strikes in fire prediction and underscores the significance of
remote sensing data in predicting such fires by integrating it with weather and topographi-
cal information. Moreover, a logistic regression model was used to assess the likelihood
of lightning-induced fires occurring with each lightning strike. This model enables early
detection of ignition-causing fires upon lightning occurrence, which aids in implement-
ing proactive fire suppression measures before further escalation. Ultimately, this study
identifies key factors that contribute to lightning-induced fires.

2. Materials and Methods
2.1. Study Area

The study area is situated in northern China, specifically in the GKM region (lati-
tude 50.7◦–53.7◦ N, longitude 121.1◦–127.1◦ E). The approximate size of the study area is
1.36 × 107 hectares, as shown in Figure 1. The regional climate is categorized as a cool tem-
perate zone, with an average annual temperature ranging from −2 to −4 ◦C. Additionally,
annual precipitation levels in the area range between 350 and 500 mm. The elevation within
the study area varies from 300 to 1400 m. The primary forest types found in this region
consist of Larix gmelinii forests, which include grass Larix gmelinii forests, Rhododendron
Larix gmelinii forests, and Thino-pyrum pumila Larix forests. Other forest types include
Pinus sylvestris forests, coniferous and broad-leaved mixed forests (white Larix gmelinii
forests), and broad-leaved forests, which encompass white forest Mongolia forests, Populus
davidiana forests, and others. Shrub vegetation predominantly comprises coniferous shrubs
(Pinus pumila shrubs) and broad-leaved shrubs such as Betula platyphylla and hazelnut.
The dominant grassland type in the GKM area is Goutang meadow (comprising Carex,
Cinnamomum camphora, etc.) [30]. This region is prone to frequent summer thunderstorms,
making it a high-incidence area for forest lightning fires in China. It holds the highest
rank in the nation in terms of both the number of forest lightning fires and the extent of
forest damage.

2.2. Fire and Lightning Monitoring Data

This study was conducted from 2005 to 2009, utilizing fire record data and lightning
monitoring data from the relevant government agencies. The fire record in the GKM
region contained the location, discovery time, and cause of each fire. During the five
years, the region experienced 145 forest fires, with 99 of them attributed to lightning
strikes, accounting for 68.28% of all incidents. This study solely focused on data related to
lightning-induced fires.

Lightning-induced fires occurred between 10 May and 27 September of each year. We
extended the time frame to April to October each year to ensure comprehensive coverage of
lightning fire prediction research and minimize potential omissions. Moreover, determining
the exact timing of lightning-induced forest fires poses significant challenges. The most
recorded forest fires were detected from 9:00 to 20:00, with more than 50% happening
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between 13:00 and 17:00 (Figure 2). Incidents during the morning and night were infrequent.
Thus, this study is organized based on daily units.
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The lightning monitoring data included records of lightning strike times, locations,
and four key parameters: intensity, slope, charge, and energy. This study aimed to identify
the initiating lightning strokes and assess the potential significance of lightning stroke
parameters in lightning-induced fire events. The analysis focused on ascertaining the
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onset time of lightning-induced fires triggered by lightning flashes, facilitating a more
comprehensive examination of the meteorological conditions associated with these fires.
So, there is a need to identify ignition lightning strikes.

2.3. Identifying Igniting Lightning Strokes

For identifying ignition lightning strikes, it is necessary to analyze the errors in the
lightning strike and forest fire data in combination with the spatial and temporal lag
between lightning strikes and subsequent fires. Two critical data are available for this
purpose: the time lag and the spatial distance between the fire and the lightning strike.
They are calculated based on when and where the fire was detected and when and where
the lightning strike occurred. The popular approach to correlating lightning strikes with
fires involves establishing a temporal and spatial buffer centered on the location of the fire.
This buffer helps identify potential lightning strike candidates that caused the fire. When
configuring the buffer, two crucial parameters must be considered: the maximum temporal
window (Tmax) and the maximum buffer radius (Smax) associated with lightning-induced
fires. In this study, Tmax is determined based on commonly used values in related research,
with two options: 7 days or 14 days. Smax can be set at either 5 km or 10 km. The next
step involves establishing a definitive criterion to identify the most probable lightning
cause from the pool of candidate lightning events. The central focus of this discussion
revolves around finding a balance between the temporal lag and spatial distance between
fires and lightning strikes. Broadly, this discussion can be categorized into two types: one
that prioritizes the temporal lag issue and another that emphasizes the spatial distance
problem. In this paper, we adopted two methods to address the time lag and the spatial
distance problem, respectively. Furthermore, this paper introduces a method for calculating
the spatiotemporal index that does not focus only on time lag and spatial distance.

Two identification methods prioritize the temporal window. One identifies the candi-
date lightning strokes with the minimum temporal window (MinT) concerning lightning
fires. The other corresponds to the minimum time per kilometer and aims to find the small-
est buffer radius among candidate lightning strokes and lightning fires with a temporal
window of less than 1 day. If no candidate lightning stroke has a temporal window of
less than 1 day, the search expands to less than 2 days and progressively increases up to
Tmax (PerSMinT).

Additionally, two identification methods prioritize the buffer radius. The first method
identifies the candidate lightning stroke with the minimum buffer radius (MinS) relative
to the lightning fire. The second method looks for the smallest temporary window when
the distance between the candidate lightning stroke and the lightning fire is less than 1 km.
If no candidate lightning stroke has a buffer radius of less than 1 km, the search expands
incrementally (starting from less than 2 km) until reaching Smax (PerSMinT). The last
method is based on the maximum spatiotemporal index “a” (MaxA) [31–35], which does
not focus exclusively on the temporal window or buffer radius. Calculation details are
as follows:

A =

(
1 − T

Tmax

)
×

(
1 − S

Smax

)
(1)

This comprehensive approach results in 12 matching outcomes (Table 1). To determine
the most effective method for identifying igniting strokes causing lightning fires and the
optimal combination of Tmax and Smax, this study analyzes factors such as the number of
lightning strokes in different outcomes, the similarity between results, and the temporal
window and buffer radius of results. Additionally, the electrical characteristics of lightning
fires are investigated.

Within the buffer zone for lightning-induced fires, if multiple candidate lightning
strokes exist (all within the buffer zone), these strokes are ranked using five identification
methods (Table 1). This process aims to identify the lightning stroke most likely to have
ignited the fire.
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Table 1. Methods were applied to select candidate lightning.

Selection Criterion Max A Min Time Min Dist Per Day Min Dist Min Time Per km

Maximum distance 5 km 10 km 5 km 10 km 5 km 10 km 5 km 10 km 5 km 10 km

Maximum time
7 d

√ √
× × × × ×

√
×

√

14 d
√ √ √ √ √ √

×
√

×
√

Max A = maximum index A; Min time = minimum holdover time; Min dist = minimum distance; Min dist per
day = daily minimum distance; Min time per km = minimum time per kilometer; d = day.

√
= method applied;

× = method not applied.

2.4. Supplementary Data Sources for Acquiring Predictive Driving Factors

This study utilized publicly available datasets from the Google Earth Engine (GEE),
including meteorological, terrain, and remote sensing data, to investigate the prediction
of lightning-induced fires. These datasets have been extensively validated and widely
utilized in various scientific studies, including those related to fire risk assessment (Table 2).
Subsequently, we computed statistical parameters of variables within a 20 km × 20 km
grid (e.g., mean and variance) to assess the strength of influencing factors in predicting
lightning fires.

Table 2. Dataset information.

Dataset Name Website URL Spatial
Resolution

Temporal
Resolution Covariate Name Units

ERA5 DAILY

https://developers.google.
com/earth-engine/datasets/

catalog/ECMWF_ERA5
_DAILY#description (accessed

on 1 January 2024)

27,830 m Daily

mean_2m_air_temperature K
minimum_2m_air_temperature K
maximum_2m_air_temperature K

dewpoint_2m_temperature K
total_precipitation m
surface_pressure Pa

mean_sea_level_pressure Pa
u_component_of_wind_10m m/s
v_component_of_wind_10m m/s

ERA5-Land

https://developers.google.
com/earth-engine/datasets/

catalog/ECMWF_ERA5
_LAND_DAILY_AGGR#
description (accessed on 1

January 2024)

11,132 m Daily snow_depth m

SRTM Digital
Elevation Data

Version 4

https://developers.google.
com/earth-engine/datasets/
catalog/CGIAR_SRTM90_V4

#description (accessed on 1
January 2024)

90 m - elevation m

MCD12Q1 V6

https://developers.google.
com/earth-engine/datasets/
catalog/MODIS_006_MCD1

2Q1#description (accessed on
1 January 2024)

500 m Yearly Land Cover Type 1 -

MODO9GA
version 6.1

https://developers.google.
com/earth-engine/datasets/
catalog/MODIS_061_MOD0

9GA#description (accessed on
1 January 2024)

500 m Daily

sur_refl_b01 -
sur_refl_b02 -
sur_refl_b03 -
sur_refl_b04 -
sur_refl_b05 -
sur_refl_b06 -
sur_refl_b07 -

https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4#description
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA#description
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Table 2. Cont.

Dataset Name Website URL Spatial
Resolution

Temporal
Resolution Covariate Name Units

MOD09A1 V6.1

https://developers.google.
com/earth-engine/datasets/
catalog/MODIS_061_MOD0
9A1#description (accessed on

1 January 2024)

500 m 8-day

sur_refl_b01 -
sur_refl_b02 -
sur_refl_b03 -
sur_refl_b04 -
sur_refl_b05 -
sur_refl_b06 -
sur_refl_b07 -

The meteorological data were obtained from the ERA5 daily dataset provided by
the European Center for Medium-Range Weather Forecasts (ECMWF) and served two
purposes: to enhance forecast inputs and to calculate the Forest Fire Weather Index (FWI).
The FWI, which consists of the Fine Fuel Moisture Code (FFMC), Duff Moisture Code
(DMC), Drought Code (DC), and Initial Spread Index (ISI) [36], is crucial for methodological
comparisons. These indices were derived from empirical formulas using precipitation,
surface temperature, relative humidity, and wind speed. Relative humidity was computed
based on dew point temperatures from the ERA5 dataset, employing the Magnus-Tetens
approximation method [37]. In addition, snow depth was used to assess snow melt time
and calculate the FWI.

Terrain data from the Space Shuttle Radar Terrain Mission (SRTM) facilitated the com-
putation of average elevation and the distribution of slope aspects (East, West, South, and
North). These topographical characteristics provided valuable insights into the study area.

Remote sensing data were instrumental in identifying predictive factors for lightning
fires. The “Type1” category from the MCD12Q1.006 MODIS Land Cover Type Annual
Global 500 m dataset was used for vegetation distribution analysis, focusing on deciduous
coniferous forest and grassland. The MOD09GA (Terra Surface Reflection Daily Global
1 km and 500 m) and MOD09A1 (Terra Surface Reflection 8-Day Global 500 m) were
used for vegetation water content. These datasets provided essential information on
vegetation moisture levels, contributing to the analysis of fire susceptibility and lightning
fire prediction.

2.5. Preprocessing of Remote Sensing Data

In previous studies [11], the utilization of remote sensing data has been infrequent,
primarily relying on the NDVI index to depict the vegetation status within the research
region. This paper emphasizes the daily moisture content of vegetation, employing a
broader range of remote sensing indices associated with vegetation moisture content to
enhance the prediction of lightning-fire incidents. Consequently, in the satellite selection
process, MODIS data, offering daily temporal resolution, was chosen. Nevertheless, remote
sensing data frequently encounter the challenge of cloud cover [38,39]. To mitigate this
issue, this study employed two datasets, MOD09GA and MOD09A1, in a complementary
manner. Given that changes in vegetation moisture content occur gradually for regions in
the daily dataset MOD09GA that are obscured by clouds, cloud removal was performed
in this study by combining the eight-day composite data from MOD09A1 preceding the
relevant day, representing the best-pixel composite image within an eight-day window. In
the mosaicking process, the average digital number (DN) values of pixels without clouds in
both MOD09A1 and MOD09GA were scaled to match, minimizing potential discrepancies
due to daily weather conditions and other variables (Figure 3).

https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1#description
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1#description


Forests 2024, 15, 647 8 of 19

Forests 2024, 15, x FOR PEER REVIEW 8 of 20 
 

 

moisture levels, contributing to the analysis of fire susceptibility and lightning fire predic-
tion. 

2.5. Preprocessing of Remote Sensing Data 
In previous studies [11], the utilization of remote sensing data has been infrequent, 

primarily relying on the NDVI index to depict the vegetation status within the research 
region. This paper emphasizes the daily moisture content of vegetation, employing a 
broader range of remote sensing indices associated with vegetation moisture content to 
enhance the prediction of lightning-fire incidents. Consequently, in the satellite selection 
process, MODIS data, offering daily temporal resolution, was chosen. Nevertheless, re-
mote sensing data frequently encounter the challenge of cloud cover [38,39]. To mitigate 
this issue, this study employed two datasets, MOD09GA and MOD09A1, in a complemen-
tary manner. Given that changes in vegetation moisture content occur gradually for re-
gions in the daily dataset MOD09GA that are obscured by clouds, cloud removal was per-
formed in this study by combining the eight-day composite data from MOD09A1 preced-
ing the relevant day, representing the best-pixel composite image within an eight-day 
window. In the mosaicking process, the average digital number (DN) values of pixels 
without clouds in both MOD09A1 and MOD09GA were scaled to match, minimizing po-
tential discrepancies due to daily weather conditions and other variables (Figure 3). 

In the context of extracting vegetation moisture content through remote sensing, two 
methods were considered: single-band inversion and multi-band remote sensing index 
inversion [7]. Consequently, among the factors influencing lightning fires, the original 
band data of the image (sur_refl_b01-sur_refl_b07) and specific remote sensing indices 
commonly used in prior studies to assess combustible moisture content were selected. The 
original band data and data from remote sensing indices were averaged within the grid 
to produce the final driving factor data. 

remote sensing data
MOD09GA Study area image cropping

Cloud removal processing 
based on QA bands

Using 8-day synthetic data 
MOD09A1, calculate and 

compensate for system 
errors between the two 

data, filling in blank data

Calculate the mean of 
remote sensing data based 

on the divided grid

 
Figure 3. Extraction of Vegetation Information Using MOD09GA and MOD09A1 Datasets. 

2.6. Lightning Fire Prediction Mode and Variable Selection 
This study employs logistic regression models to predict the likelihood of lightning 

strikes leading to fires by incorporating meteorological, lightning, vegetation, and topo-
graphic data. Table 3 lists the specific variables used in the model. Meteorological indica-
tors such as temperature, wind speed, wind direction, and humidity, among others, are 
well-established and widely recognized for their significance in assessing fire risk [40,41]. 
Previous research has demonstrated the efficacy of meteorological monitoring data in 
identifying areas with the highest risk of lightning-induced wildfires [29]. Furthermore, 

Figure 3. Extraction of Vegetation Information Using MOD09GA and MOD09A1 Datasets.

In the context of extracting vegetation moisture content through remote sensing, two
methods were considered: single-band inversion and multi-band remote sensing index
inversion [7]. Consequently, among the factors influencing lightning fires, the original
band data of the image (sur_refl_b01-sur_refl_b07) and specific remote sensing indices
commonly used in prior studies to assess combustible moisture content were selected. The
original band data and data from remote sensing indices were averaged within the grid to
produce the final driving factor data.

2.6. Lightning Fire Prediction Mode and Variable Selection

This study employs logistic regression models to predict the likelihood of lightning
strikes leading to fires by incorporating meteorological, lightning, vegetation, and topo-
graphic data. Table 3 lists the specific variables used in the model. Meteorological indica-
tors such as temperature, wind speed, wind direction, and humidity, among others, are
well-established and widely recognized for their significance in assessing fire risk [40,41].
Previous research has demonstrated the efficacy of meteorological monitoring data in
identifying areas with the highest risk of lightning-induced wildfires [29]. Furthermore,
considering lightning data as the ignition source for lightning fires is imperative to assess
lightning fire risk [8]. Section 3.1 of this paper describes the lighting parameter selection
process in detail.

In the context of vegetation, moisture content significantly influences the incidence of
fires [42]. Alterations in the moisture content of vegetation impact its spectral reflectance
across various bands. Generally, as vegetation’s moisture content rises, its reflectance in-
creases in the near-infrared band and diminishes in the visible spectrum. This phenomenon
occurs because moisture within vegetation absorbs light in the near-infrared band while
simultaneously reflecting light in the visible spectrum. Consequently, numerous remote
sensing indices have been developed to gauge vegetation moisture content [8,43]. Given
that the spectral properties of the vegetation vary across different bands, the reflections on
vegetation moisture content differ accordingly. Therefore, this study initially computed
multiple remote sensing indices, aiming to assess their efficacy in predicting lightning
strikes and fires. It includes the Bare Soil Index (BSI) [44,45], Enhanced Vegetation Index
(EVI) [46], Greenness Index (GRATIO) [47], and Normalized Difference Moisture Index
(NDMI) [48]. These indices have been used in studies related to fires, vegetation, and other
related research areas. Vegetation types also have a significant impact on the occurrence of
lightning fires [49].
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Table 3. All logistic regression model variables in this article.

Variables Describe R Model F Model R + F Model

Intension Parameters of individual lightning
√ √ √

Slope Parameters of individual lightning
√ √ √

Bare soil index (BSI) Remote sensing index
(Mean value of data within the grid)

√ √

Enhanced vegetation index
(EVI)

Remote sensing index
(Mean value of data within the grid)

√ √

Greenness index (GRATIO) Remote sensing index
(Mean value of data within the grid)

√ √

Normalized Difference
Moisture Index (NDMI)

Remote sensing index
(Mean value of data within the grid)

√ √

Sur_refl_b02 MODIS Band 2
(Mean value of data within the grid)

√ √

Sur_refl_b04 MODIS Band 4
(Mean value of data within the grid)

√ √

maximum_2m_air_temperature Maximum air temperature at 2 m height (daily
maximum) (Mean value of data within the grid)

√ √ √

total_precipitation Total precipitation (daily sums) (Mean value of
data within the grid)

√ √ √

u_component_of_wind_10m 10m u-component of wind (daily average)
(Mean value of data within the grid)

√ √ √

v_component_of_wind_10m 10m v-component of wind (daily average)
(Mean value of data within the grid)

√ √ √

aspectArea0 Percentage of area with an east slope
within the grid

√ √ √

aspectArea1 Percentage of area with a west slope
within the grid

√ √ √

aspectArea2 Percentage of area with a south slope
within the grid

√ √ √

aspectArea3 Percentage of area with a north slope
within the grid

√ √ √

Elevation variance The variance of elevation within the grid
reflects the degree of ground folding

√ √ √

elevation Elevation (Mean value of data within the grid)
√ √ √

Vegetation1

Deciduous Needleleaf Forests: dominated by
deciduous needleleaf (larch) trees
(canopy > 2 m). Tree cover > 60%

(Percentage of area within the grid)

√ √ √

Vegetation2 Grasslands: dominated by herbaceous annuals
(<2 m) (Percentage of area within the grid)

√ √ √

FFMC FWI index (Mean value of data within the grid)
√ √

DMC FWI index (Mean value of data within the grid)
√ √

DC FWI index (Mean value of data within the grid)
√ √

ISI FWI index (Mean value of data within the grid)
√ √

R model = Remote sensing data logistic regression; F mode = FWI data logistic regression; R + F model = Remote
sensing data and FWI data logistic regression.

In terrain data analysis, elevation within grids is utilized to calculate variance, reflect-
ing the topographic relief, which has been validated in predicting lightning fire risk [11].
Additionally, data such as slope and aspect are commonly used in fire risk prediction as
well [50].

In this study, the involvement of several indices reflecting vegetation water content
may result in linear correlations between them. These correlations may adversely affect
the logistic regression model. Therefore, the correlations between the variables must
be evaluated. The variance inflation factor (VIF) method [51] was employed to test for
multicollinearity between variables. Subsequently, variables with VIF values equal to or
greater than 10 were removed from the analysis to mitigate the multicollinearity problem.
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2.7. Data Sampling and Collinearity Diagnosis

Although the dataset used in this study includes over 450,000 records of lightning
detection and location data from 2005 to 2009, lightning-caused forest fires were limited to
only 99 instances. The data imbalance exists in many directions of fire research, such as fire
identification [52,53]. The severe imbalance in the data challenges the construction of predic-
tive models. Early in the experiment, the accuracy of the models derived from the severely
unbalanced training set is significantly influenced by the negative samples in the training
set, resulting in the model erroneously classifying all samples as counterexamples. In order
to solve this problem, Haeng Yeol Oh et al. tried to compare multiple methods for oversam-
pling positive samples in fire risk prediction, among which borderline-SMOTE obtained an
accuracy of 79.54% on its data, proving the effectiveness of the method [54]. Nadeem et al.
used a simple random sampling method to downsample negative samples [11].

However, the data imbalance in this study is even more severe than in the above
articles. To tackle this issue, we implemented a combination of oversampling and un-
dersampling on the training set. Specifically, we employed the Synthetic Minority Over-
sampling Technique (borderline-SMOTE) [55] algorithm to oversample data representing
lightning strikes (positive samples) associated with forest fires. Simultaneously, lightning
strike data representing no forest fires (negative samples) were undersampled by random
deletion. This approach resulted in a well-balanced training set. The borderline-SMOTE
algorithm is specifically designed to improve the performance of classifiers when dealing
with unbalanced datasets. It increases the number of minority class samples by identify-
ing boundary samples and generating synthetic data, thereby enhancing the classifier’s
ability to recognize these instances. This method demonstrated favorable performance in
our study.

In the test set, positive sample data were not oversampled, but negative samples
underwent undersampling to maintain some level of imbalance and reflect real-world
conditions. Ultimately, we established a test set with a positive-to-negative sample ratio of
1:10. When evaluating the model’s performance, standard binary classification evaluation
methods were applied, incorporating the use of a confusion matrix and ROC curve analysis.
Additionally, we scrutinized the significance of testing results to assess the importance of
the model’s driving factors. Lastly, we explored fitting a logistic regression model excluding
remote sensing data but incorporating the Forest Fire Weather Index (FWI) for comparison
with the model incorporating remote sensing information.

3. Results
3.1. Analysis of Igniting Strokes Identification Results

This section evaluates the 12 diverse methods used to identify ignited lightning strikes,
as outlined in Section 2.3, Determining Ignited Lightning Strikes. There were 99 lightning-
ignited fires recorded over five years, from 2005 through 2009. The number of successful
matches is displayed in Table 4. In the best case in Table 2 (Tmax = 14 days, Smax = 10 km),
only 65 fires (65.66%) were associated with identified igniting strokes. In cases of lightning-
induced fires lacking outcomes, determining whether the absence of results arises from
errors in lightning or fire records or from lightning strokes surpassing the buffer area of
the respective fire becomes unfeasible. These results are excluded from subsequent model
development to ensure data accuracy.

Table 4. The number of successful matches is depicted.

Selection Criterion Max A Min Time Min Dist Per Day Min Dist Min Time Per km

Maximum distance 5 km 10 km 5 km 10 km 5 km 10 km 5 km 10 km 5 km 10 km

Maximum time
7 d 33 51 × × × × × 51 × 51

14 d 43 65 43 65 43 65 × 65 × 65

Max A = maximum index A; Min time = minimum holdover time; Min dist = minimum distance; Min dist
per day = daily minimum distance; Min time per km = minimum time per kilometer; d = day. × = method not
applied.
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In scenarios where various approaches result in an equal count of lightning occur-
rences, variations are evident among the selected lightning events within the buffer zone.
Particularly, a higher degree of similarity is observed among methods m7–m12 (Figure 4).
Similarly, a distinct resemblance is noted among occurrences of the Max A method. How-
ever, a comparatively lower level of similarity is observed between these two groups of
methods. This study indicates a decreasing trend in occurrences of lightning-induced fires
with an increase in sample size, temporary window duration, and buffer zone radius.
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In light of this observation, we analyzed distinct outcomes (Figure 5) to assess the
relationship between buffer radius and lightning occurrences. However, in this study,
a decreasing trend is evident in the overall distribution of lag time, with the exception
of a notable decrease in data volume within a lag time of 1–2 days. Conversely, most
distributions in lag distance exhibit an ascending trend. This divergence may be attributed
to inaccuracies and significant errors in lightning locating devices. Consequently, it is
foreseeable that prioritizing distance methods, including Min dist_7d, Min dist_14d, Min
dist per day_5km, Min dist per day_10km, Min time per km_7d, and Min time per km_14d,
may yield inconclusive results. However, the comparison of methods hinges primarily on
the accuracy of the lightning fire prediction model formulated through their utilization.
Various methods are employed to meticulously gather sets of lightning events that initiate
lightning strikes. This is conducted with the aim of conducting a rigorous statistical analysis
of lightning characteristics susceptible to causing fires.
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Subsequently, we conducted an analysis of the matched lightning indicators (Figure 6).
It is noteworthy that, in comparison to all lightning strikes, the lightning strikes causing
fires tend to be more concentrated within the intensity and slope range of −10 to 0. This
concentration might indicate a relationship with the occurrence of fires. Regarding energy
and charge, no significant differences were observed. Therefore, subsequent lightning
parameters were narrowed down to exclusively encompass lightning intensity and slope.
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Figure 6. Distribution of all lightning and matching lightning parameters (ignoring some data
intervals with a proportion less than 1%, which may be caused by errors) (a) Intension, (b) Slope,
(c) Energy, and (d) Charge.

3.2. Logistic Regression Prediction Model Results of Remote Sensing Data

To substantiate the validity of the methods in the GKM region, this study adopted a
consistent approach to developing logistic regression models for 12 sets of ignited stroke
outcomes. Following the alleviation of data collinearity effects, the model retained a total
of 20 variables, as outlined in Table 3.

In model training, a significant amount of information becomes lost during the model
fitting process owing to the undersampling of negative samples. Therefore, in this study,
we employed multiple fittings during the model establishment process, and the final
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model results were derived from the average fitting outcomes. This method has been
used in the study of Nadeem et al. with good results [11]. Since the ratio of the number
of negative samples contained in a training set to the total number of negative samples
is about 500, the number of fits for each model is configured at 500 to effectively utilize
the substantial majority of negative samples. The training predominantly employs scikit-
learn 1.2.0 (sklearn) [56], with max_iter set to 1000 and other parameters left at their
default values.

The average AUC results for 500 model iterations are depicted in Table 5. Firstly, it is
evident in the logistic regression (R) model using remote sensing data that different numbers
of results significantly impact the model’s accuracy. Among these, when Tmax = 14 days
and Smax = 10 km, the results are notably better. This indicates that these results provide a
richer sample set, leading to the best-fitting effect of the model. Secondly, for the four groups
of data with successful matches of fewer than 51, their positive sample data are reduced by
51.2% to 97.0%. While these data may show better identification effects within the sample
after undergoing the same sampling process, their performance on the validation set is
inferior to the former. However, overall, the differences in their accuracy are not significant.

Table 5. All the AUC results of logistic regression models in this article.

Selection Criterion Successful Matches R Model F Model R + F Model

maxA_14d10km

65

0.849 0.807 0.891
minT_10km 0.803 0.750 0.856
minS_14d 0.773 0.712 0.834

perDminS_10km 0.802 0.749 0.855
perSminD_14d 0.766 0.712 0.82
maxA_7d10km

51
0.798 0.743 0.852

minS_7d 0.724 0.663 0.785
perSminD_7d 0.74 0.679 0.804

maxA_14d5km
43

0.785 0.719 0.85
minT_5km 0.754 0.681 0.826

perDminS_5km 0.806 0.744 0.868
maxA_7d5km 33 0.785 0.721 0.872

R model = Remote sensing data logistic regression; F mode = FWI data logistic regression; R + F model = Remote
sensing data and FWI data logistic regression.

Among groups with the same number of successful matches, maxA consistently
achieves the best or second-best accuracy. Particularly, the maxA_14d10km method yields
the optimal results. In Nadeem et al.’s study, this method attained the highest accuracy in
identifying ignition points [11]. In this study, its outstanding performance may similarly be
attributed to its precise identification of lightning strikes.

To assess the effectiveness of remote sensing data in predicting lightning-induced
fires, this study conducted a comparative analysis with the widely utilized Fire Weather
Index (FWI) in the field. Following the mitigation of data collinearity, as illustrated in
Table 3, this study proceeded to evaluate successful matches and compare the accuracy of
different models based on identification methods. The conclusions align with the results
from the R model. However, when excluding remote sensing data from the model input
and incorporating FWI (Fire Weather Index) data, there is a slight overall decrease in model
accuracy. This could be attributed to the fact that the FWI index is calculated based on
weather data. While it correlates well with surface moisture content, the information it
contains can also be considered part of the weather data. This reduction in input factors
may consequently lead to the observed decrease in accuracy.

Finally, the combination of remote sensing data with FWI data was performed, alle-
viating the impact of data collinearity. In this combined model, 24 variables persisted, as
shown in Table 5. The overall AUC values for the model were higher than using any single
data source, reaching the highest model accuracy. The optimal AUC value, 0.891, was
attained using the method maxA_14d10km. The reason could be that FWI data compensate
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for the non-linear effects of weather on fire occurrences, further enhancing the accuracy of
the model based on the R model.

4. Discussion
4.1. Response of Fire Prediction to Different Lightning Strike Identification Methods

Our results underscore the critical importance of method selection in the modeling
process when predicting whether a lightning strike can further escalate into a wildfire.
This includes choices related to the lightning strikes that trigger fires and the driving
factors considered in wildfire prediction. The error distribution of unknown lightning
strike data significantly influences the outcome, with various spatiotemporal matching
windows and methods impacting the final results. In Section 3.1, we analyze the lag time
and spatial distribution trends of results from various methods, ultimately identifying a
preferred matching method. The findings can be summarized as follows: Distance-based
prioritized matching outperforms spatiotemporal index methods, which in turn outperform
prioritized time matching. In Section 3.2, we rank matching methods based on different
model prediction accuracies. The results can be summarized as follows: spatiotemporal
index methods outperform prioritized time matching, which in turn outperforms distance-
based prioritized matching. The main contradiction arises from the significant differences in
the performance of distance-based prioritized sorting methods. One reason for this may be
the trend analysis for the former, possibly because of the high number of potential lightning
strikes during thunderstorms within a short time frame. This abundance makes it easier
for even misjudged lightning strikes to satisfy the time distribution, leading to a trend that
is easily met in an exponential distribution but challenging in a spatial distribution. This
results in a more accurate evaluation of the distance-based prioritized method. The second
reason is associated with the model’s low spatial resolution, diminishing the significance
of distance and leading to a less effective assessment of the distance-based prioritized
method. Moreover, prevalent errors in the lightning detection and positioning system’s
distance, combined with limited data on lightning-induced fires, exacerbate this issue.
Nevertheless, taking all factors into account, the spatiotemporal index method emerges
as the recommended approach for lightning-fire matching in this study. It excels by
concurrently addressing the temporal and spatial lag of lightning-induced fires, ensuring
enhanced stability and consistently favorable results across all experiments.

4.2. Response of Fire Prediction to Explanatory Variables

In terms of selecting driving factors for wildfire prediction, the Fire Weather Index
(FWI) model shows comparable performance to the remote sensing data model. Different
lightning selection methods result in models displaying diverse AUC values. This validates
the feasibility of the remote sensing data model. Additionally, it suggests that, in future
research, enhancing the temporal and spatial resolution of remote sensing data can improve
the prediction of lightning-induced fires, providing greater development potential. The
combination of remote sensing data with FWI produces the highest predictive accuracy for
lightning-induced fires.

The significance analysis of all variables is presented in Table 6. Notably, there is a
breakpoint observed in the absolute values of t-stats around 30. Eleven variables, namely
BSI, sur_refl_b02, maximum_2m_air_temperature, v_component_of_wind_10m, elefang,
elejun, vegetation3, vegetation10, FFMC, DC, and ISI, are deemed important as their
absolute t-stats exceed 30.

Within meteorological factors, high temperatures may lead to drier vegetation, conse-
quently elevating the likelihood of lightning fires. Among the factors influencing lightning
fires, the maximum daily air temperature exhibits a notably positive impact, demonstrating
statistical significance. Conversely, higher wind speeds are associated with a decreased
likelihood of lightning fires. The v-component of wind speed at 10 m height exhibits a
negative impact, indicating that higher north winds are more likely to cause lightning fires.
Northern winds may introduce particular meteorological conditions, such as decreased pre-
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cipitation and humidity, contributing to vegetation desiccation and a heightened likelihood
of lightning fires.

Table 6. Logistic regression results.

Name Coef Std Error Tval Pval Lower Alpha Upper Alpha

constant −0.002 0.012 −0.198 0.843 −0.025 0.021
Intension −0.454 0.021 −21.860 <0.001 −0.495 −0.413

Slope −0.155 0.021 −7.339 <0.001 −0.196 −0.114
BSI −1.477 0.026 −57.089 <0.001 −1.528 −1.426
EVI 0.419 0.017 24.817 <0.001 0.386 0.452

GRATIO −0.462 0.019 −23.875 <0.001 −0.500 −0.424
NDMI 0.254 0.029 8.862 <0.001 0.198 0.310

sur_refl_b02 0.870 0.026 32.980 <0.001 0.819 0.922
sur_refl_b04 −0.271 0.024 −11.118 <0.001 −0.319 −0.223

maximum_2m_air_temperature 1.027 0.016 62.284 <0.001 1.059 0.995
total_precipitation 0.126 0.018 7.114 <0.001 0.091 0.161

u_component_of_wind_10m 0.059 0.012 4.900 <0.001 0.035 0.082
v_component_of_wind_10m −1.083 0.012 −88.934 <0.001 −1.107 −1.059

aspectArea0 −0.493 0.020 −24.123 <0.001 −0.533 −0.453
aspectArea1 −0.707 0.027 −26.407 <0.001 −0.759 −0.654
aspectArea2 −0.197 0.028 −7.052 <0.001 −0.251 −0.142
aspectArea3 −0.599 0.022 −26.682 <0.001 −0.643 −0.555

elefang −1.080 0.021 −51.294 <0.001 −1.121 −1.039
elejun 1.389 0.021 65.956 <0.001 1.347 1.430

vegetation3 0.946 0.012 78.286 <0.001 0.922 0.969
vegetation10 0.592 0.011 53.674 <0.001 0.570 0.614

FFMC 1.154 0.025 46.293 <0.001 1.105 1.202
DMC −0.384 0.017 −22.163 <0.001 −0.418 −0.350
DC 1.474 0.015 98.647 <0.001 1.445 1.503
ISI 0.622 0.018 34.403 <0.001 0.586 0.657

Concerning remote sensing information, the Bare Soil Index (BSI) indicates the extent
of exposed soil on the surface. A low BSI likely indicates higher vegetation density and
coverage, negatively impacting lightning fire occurrences. The near-infrared band of
the MODIS satellite, sensitive to chlorophyll content and vegetation structure, notably
influences lightning fires, based on the study results.

Within the Fire Weather Index (FWI), the Fine Fuel Moisture Code (FFMC) reflects the
humidity of fine combustible materials, with higher values indicating drier conditions. The
Drought Code (DC) represents deep soil moisture conditions, with higher values indicating
drier soil. The Initial Spread Index (ISI) reflects the initial spread speed of fires and is
influenced by factors such as fine combustible material humidity, wind speed, and fire
intensity. All three FWI variables have a significant positive impact on lightning fires in
the study.

In terms of terrain information, higher elevations often experience more extreme
temperatures and humidity, leading to unstable weather conditions and an increased proba-
bility of lightning activity. Lower elevation variances suggest flatter and more stable terrain,
fostering organized local airflow and increasing the likelihood of lightning activity. Con-
versely, higher elevation variances may introduce more turbulence, potentially decreasing
the likelihood of lightning occurrences.

Concerning vegetation types, deciduous needleleaf trees, which lose leaves in the
dry season, are more susceptible to dry and combustible conditions. Herbaceous plants,
with short lifecycles and leaf loss in the dry season, are also prone to dry and combustible
conditions. This increases the likelihood of vegetation becoming fuel for lightning fires.
Both Deciduous Needleleaf Forests and Grasslands show a significant positive impact on
lightning fires.
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In conclusion, remote sensing information is highlighted as a crucial factor in predict-
ing lightning fires, alongside meteorological factors, terrain information, vegetation types,
and FWI indices, all of which have nearly equal importance. The identified significant
factors align with past research results and theoretical models.

4.3. Model Results

We propose a logistic regression model incorporating remote sensing data to predict
whether lightning-induced fires occur before they become detectable. The model achieved
an AUC of 0.891. In comparison with other studies, direct comparisons are challenging due
to differences in research focus. However, previous studies have reported AUC values of
0.859 [21] and 0.84 [57], indicating favorable performance. Additionally, our study improves
upon previous research in two aspects. Firstly, by identifying the lightning parameters
(intensity and slope) that trigger lightning strikes, the accuracy of the model was improved
by 3.6% compared to the model without these two parameters (AUC = 0.860). Secondly,
we augmented the model with remote sensing data to conveniently obtain vegetation
moisture content information, resulting in a 4.9% improvement over models using only
FWI. This enables the early identification of lightning-induced fires when they occur,
thereby facilitating proactive measures to extinguish fires before they escalate.

However, our study has several limitations. Firstly, the availability of remote sensing
data is affected by cloud cover, leading to decreased data timeliness. Future research could
explore the integration of multi-source remote sensing data acquisition to mitigate this
issue. Secondly, we did not fully leverage the high spatial resolution of remote sensing
data and lightning location information. Utilizing these datasets effectively, along with
incorporating extensive historical lightning-induced fire data, holds promise for achieving
higher accuracy in forecasting lightning-induced fires.

5. Conclusions

As the frequency of extreme climate conditions rises, predicting future lightning fires
becomes increasingly challenging. Due to the lag in the occurrence of lightning fires in
relation to lightning events, forecasting efforts can be directed toward individual lightning
strikes. This requires matching historical data with lightning events. In the establishment
of lightning fire prediction models, it is important to identify the methods of lightning
strikes that have caused historical fires. Our results indicate that spatiotemporal indices
offer a comprehensive approach. In the fitting process of lightning fire prediction models,
this study emphasizes the value of remote sensing data in supplementing ground-based
vegetation information, thereby enhancing prediction accuracy. Remote sensing data
provide superior resolution compared to traditional lightning fire prediction approaches.
Leveraging the spatial resolution of remote sensing data has the potential to enhance the
precision of future lightning fire predictions to a new level.
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